Analytic Guidelines: Creating Disability Identifiers Using the Washington Group Extended Set on Functioning (WG-ES) SAS Syntax

Introduction

As with the WG Short Set on Functioning (WG-SS), analysis of the WG Extended Set on Functioning (WG-ES) can also produce multiple disability identifiers based on the choice of the severity threshold or cut-off. The SAS syntax below, however, provides for the calculation of disability identifiers using different sets of WG-ES domains using the recommended cut-off for international comparisons (described below).

For each of the disability identifiers described, the level of inclusion is at least one domain/question is coded A LOT OF DIFFICULTY or CANNOT DO AT ALL - or - for the domains Anxiety, Depression, Pain and Fatigue, the highest level of difficulty on a four-point scale.

Each of the four disability identifiers described in this document is defined based on the choice of domains of functioning included:

WG-SS: Short Set: 6 domains, 6 questions.
WG-ES 1: Extended Set: 11 domains, 25 questions.
WG-ES 2: Modified Extended Set (WG-ES MINUS Pain and Fatigue): 9 domains, 20 questions.

WG-ES 3: Short Set Enhanced (WG-SS PLUS Upper body, Anxiety and Depression): 9 domains, 12 questions.

NOTE: For data analysis, use your standard weighting and estimation techniques.

The Washington Group Implementation Documents cover the tools developed by the Washington Group on Disability Statistics (WG) to collect internationally comparable disability data on censuses and surveys. The documents address best practices in implementing the Short Set, Extended Set, Short Set - Enhanced, the WG / UNICEF Child Functioning Modules for children 2-4 and 517 years of age, and the WG / ILO LFS Disability Module, as well as other WG tools. Topics include translation, question specifications, analytic guidelines, programming code for analyses, the use of the tools for the purposes of disaggregation, and more.
To locate other WG Implementation Documents and more information, visit the Washington Group website: http://www.washingtongroupdisability.com/.

The SAS syntax is based on the variable labels indicated in the table below. The complete WG-ES module includes more questions than appear in this table. Disability status is determined through difficulty in the basic, universal activities without the use of assistive technology or other assistance. There are several mobility questions, for example, that reference difficulty walking with the use of assistance. Those questions are not included in the analytic plan provided here; however, they can be
used in other analyses that look more closely into the effect of assistive technology (environmental facilitators) on functioning.

Only those questions/variables below are used in the determination of disability identifiers.
Ensure that you use the same variable labels OR revise the SAS syntax to reflect the variable labels in your database.

The WG-SS is administered as part of the U.S. National Health Interview Survey (NHIS). The data used to prepare these guidelines come from the 2013 NHIS.

Note to users of the NHIS: the variable names in the NHIS data file and documentation may differ from those used in this document; e.g., the self-care domain variable referenced as SC-SS in this document is referred to as UB_SS in the NHIS data file and documentation.

The SAS code used to produce the outputs in this document is included in its entirety in Appendix 1.

WG Extended Set Questions/Domains	Variable Label	Response Pattern
VISION		
1. Do you have difficulty seeing even if wearing glasses?	VIS_SS	1
COMMUNICATION		
2. Using your usual language, do you have difficulty communicating (for example understanding or being understood by others)?	COM_SS	1
HEARING		
3. Do you have difficulty hearing even if using a hearing aid?	HEAR_SS	1
4. Difficulty hearing conversation with one person in quiet room?	HEAR_3	1
5. Difficulty hearing conversation with one person in noisier room?	HEAR_4	1
COGNITION		
6. Do you have difficulty remembering or concentrating?	COG_SS	1
7. Difficulty remembering, concentrating, or both?	COG_1	2
8. How often have difficulty remembering?	COG_2	3
9. Amount of things you have difficulty remembering?	COG_3	4
SELF-CARE / UPPER BODY		
10. Do you have difficulty with (self-care such as) washing all over or dressing?	SC_SS	1
11. Difficulty raising 2 liter bottle of water from waist to eye level?	UB_1	1

For more information on the Washington Group on Disability Statistics, visit:

12. Degree of difficulty using hands and fingers	UB_2	1
MOBILITY		
13. Do you have difficulty walking or climbing stairs?	MOB_SS	1
14. Difficulty walking 100 yards on level ground without aid or equipment?	MOB_4	1
15. Difficulty walking $1 / 3$ rd mile on level ground without aid or equipment	MOB_5	1
16. Difficulty walking up or down 12 steps without aid or equipment?	MOB_6	1
AFFECT (ANXIETY)		
17. How often feel worried, nervous, or anxious?	ANX_1	5
18. Level of feelings when last felt worried, nervous, or anxious?	ANX_3	6
AFFECT (DEPRESSION)		
19. How often do you feel depressed?	DEP_1	5
20. How depressed you fell last time you were depressed?	DEP_3	6
PAIN		
21. Frequency of pain in past 3 months?	PAIN_2	7
22. How much pain you had last time you had pain?	PAIN_4	6
FATIGUE		
23. How often felt very tired or exhausted in past 3 months?	TIRED_1	7
24. How long most recent tired or exhausted feelings lasted?	TIRED_2	8
25. Level of tiredness last time felt very tired or exhausted?	TIRED_3	6

NOTE: \quad Red refers to the Washington Group Short Set (WG-SS).
All 25 questions are included in WG-ES 1.
Red plus Blue plus Green questions are included in WG-ES 2.
Red plus Green questions are included in WG-ES 3.

For more information on the Washington Group on Disability Statistics, visit:
Page | 3 http://www.washingtongroup-disability.com/.

Response patterns:

	Pattern 1	Pattern 2	Pattern 3	Pattern 4
1	No difficulty	Difficulty remembering only	Sometimes	A few things
2	Yes, Some difficulty	Difficulty concentrating only	Often	A lot of things
3	Yes, A lot of difficulty	 concentrating	All of the time	Almost everything
4	Cannot do at all			
7	Refused			
8	Not ascertained			
9	Don't know			

	Pattern 5	Pattern 6*	Pattern 7	Pattern 8
1	Daily	A little	Never	Some of the day
2	Weekly	A lot	Some days	Most of the day
3	Monthly	Somewhere in between a little and a lot	Most days	All of the day
4	A few times a year		Every day	
5	Never			
7	Refused			
8	Not ascertained			
9	Don't know			

* IN THE SYNTAX BELOW, NOTE THAT ITEMS WITH RESPONSE PATTERN 6 (ANX_3, DEP_3, PAIN_4 AND TIRED_3) ARE RECODED TO PLACE "SOMEWHERE BETWEEN" NUMERICALLY IN-BETWEEN "A LITTLE" AND "A LOT".

The WG-SS is embedded within the WG-ES.
The WG-ES is supplemented with:

- additional questions to those existing 6 domains and
- additional domains (several with multiple questions).

The SAS syntax presented below includes a couple of elements that were particular to the content of the WG-ES.

First, it was important to determine single domain-specific identifiers for those domains of functioning that included multiple questions. For example, upper body functioning includes two questions, each eliciting specific and unique actions: difficulty raising a bottle of water from waist to eye level (arms/shoulders), and difficulty using hands and fingers. Those two questions were analyzed and combined to produce a single upper body indicator with four levels of difficulty ranging from 1 - low
difficulty to 4 - high difficulty - not unlike the categorical responses to the single WG-SS questions: no difficulty, some difficulty, a lot of difficulty and cannot do at all. As with the upper body domain, the WG-ES domains cognition, anxiety, depression, pain and fatigue have different response patterns that do not readily 'translate' into the usual WG response pattern. For these domains of functioning, a similar 4scale response pattern was produced and annotated as level 1 through 4 , where 1 is the lowest level of difficulty and 4 is the highest.

Second, individual domain indicators were assessed together to determine the appropriate cut-off for inclusion into an overall disability identifier - for the purposes of estimating prevalence and disaggregating outcome indicators by disability status.

NOTE:

For all variables, codes (7) Refused, (8) Not Ascertained, and (9) Don't know, are recoded to Missing.

SAS WG Extended Set Syntax Annotated with Output Tables

Actual SAS syntax is indented and are in Bold text.
NOTE: For data analysis, use your standard weighting and estimation techniques.
The syntax below produces frequency distributions on individual domain questions - crosstabulations on multiple domain questions, and calculates INDICATOR variables for domains with multiple questions - for use in the determination of disability identifiers.

VISION

Step 1. Generate frequency distribution for Vision domain.
VIS_SS is the WG-SS Vision question.
If VIS_SS in $(1,2,3,4)$ then Vision=VIS_SS;
Else If VIS_SS in $(7,8,9)$ then Vision=.;
Proc Freq Data=SS. ExtendedSets2013;
Tables Vision;
Run;

Vision: Degree of difficulty seeing					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	13690	79.0	81.6	81.6
	Some difficulty	2708	15.6	16.2	97.8
	A lot of difficulty	333	1.9	2.0	99.8
	Cannot do at all	36	. 2	. 2	100.0
	Total	16767	96.8	100.0	
Missing		559	3.2		
Total		17326	100.0		

For more information on the Washington Group on Disability Statistics, visit:

COMMUNICATION

Step 2. Generate frequency distribution for Communication domain.
COM_SS is the WG-SS Communication question.
If COM_SS in $(1,2,3,4)$ then Communication=COM_SS;
Else If COM_SS in $(7,8,9)$ then Communication=.;

Proc Freq Data=SS. ExtendedSets2013;
Tables Communication;
Run;

Communication: Degree of difficulty communicating using usual language

				Valid Fequency	Cumulative Percent
Valid	No difficulty	15874	91.6	94.7	94.7
	Some difficulty	745	4.3	4.4	99.2
	A lot of difficulty	94	.5	.6	99.7
	Cannot do at all	43	.2	.3	100.0
	Total	16756	96.7	100.0	
Missing		570	3.3		
Total		17326	100.0		

HEARING

Step 3. Generate frequency distributions and cross-tabulations for Hearing domain questions and determine Hearing Indicator

HEAR_SS is the WG-SS Hearing question.
If HEAR_SS in $(1,2,3,4)$ then Hearing=HEAR_SS;
Else If HEAR_SS in $(7,8,9)$ then Hearing=.;
HEAR_3 is Difficulty hearing conversation with one person in quiet room.
If HEAR_3 in $(\mathbf{1}, \mathbf{2}, \mathbf{3}, 4)$ then HEAR_3_R=HEAR_3;
Else If HEAR_3 in $(7,8,9)$ then HEAR_3_R=.;
HEAR_4 is Difficulty hearing one person in noisier room.
If HEAR_4 in (1, 2, 3, 4) then HEAR_4_R=HEAR_4;
Else If HEAR_4 in $(7,8,9)$ then HEAR_4_R=.;

Proc Freq Data=SS. ExtendedSets2013;
Tables Hearing HEAR_3_R HEAR_4_R;
Run;

Hearing: Degree of difficulty hearing

		Frequen cy	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	13680	79.0	81.6	81.6
	Some difficulty	2753	15.9	16.4	98.0
	A lot of difficulty	310	1.8	1.8	99.9
	Cannot do at all	23	.1	.1	100.0
	Total	16766	96.8	100.0	
	560	3.2			
Total	17326	100.0			

HEAR_3_R : Difficulty hearing conversation with one person in quiet room

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	15249	88.0	91.0	91.0
	Some difficulty	1316	7.6	7.9	98.9
	A lot of difficulty	162	.9	1.0	99.9
	Cannot do at all	10	.1	.1	100.0
	Total	16737	96.6	100.0	
Missing	589	3.4			
Total	17326	100.0			

HEAR_4_R: Difficulty hearing one person in noisier room

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	11697	67.5	70.0	70.0
	Some difficulty	4191	24.2	25.1	95.1
	A lot of difficulty	779	4.5	4.7	99.7
	Cannot do at all	48	.3	.3	100.0
	Total	16715	96.5	100.0	
Missing	611	3.6			
Total	17326	100.0			

Step 4. For Hearing questions, recode HEAR_3_R and HEAR_4_R to value 4 (cannot do at all) if Hear_SS is 4 (Cannot do at all).
The syntax below recodes HEAR_3_R and HEAR_4_R to 4 (cannot do at all) if Hear_SS is 4 (cannot do at all).

If Hearing $=4$ and HEAR_3_R $=$. then HEAR_3_X $=4$;
Else HEAR_3_X=HEAR_3_R;
If Hearing $=4$ and HEAR_4_R $=$. then HEAR_4_X $=4$;
Else HEAR_4_X=HEAR_4_R;
Proc Freq Data=SS. ExtendedSets2013;
Tables HEAR_3_X HEAR_4_X;
Run;

| HEAR_3_X : Difficulty hearing conversation with one person in quiet room | | | | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| | | | Perc | | |
| Valid | No difficulty | 15249 | 88.0 | 91.0 | 91.0 |
| | Some difficulty | 1316 | 7.6 | 7.9 | 98.8 |
| | A lot of difficulty | 162 | .9 | 1.0 | 99.8 |
| | Cannot do at all | 33 | .2 | .2 | 100.0 |
| Total | 16760 | 96.7 | 100.0 | | |
| Missing | 566 | 3.3 | | | |
| Total | 17326 | 100. | | | |

HEAR_4_X: Difficulty hearing one person in noisier room

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	11697	67.5	69.9	69.9
	Some difficulty	4191	24.2	25.0	94.9
	A lot of difficulty	779	4.5	4.7	99.6
	Cannot do at all	71	.4	.4	100.0
	Total	16738	96.6	100.0	
Missing	588	3.4			
Total	17326	100.0			

Step 5. Generate a cross-tabulation of the two Hearing Extended Set questions: HEAR_3_X and HEAR_4_X.

The syntax below produces a cross-tabulation of the two Extended Set questions: HEAR_3_X: Difficulty hearing in a quiet room and HEAR_4_X: Difficulty hearing in a noisier room to determine a single HEARING INDICATOR.

Proc Freq Data=SS. ExtendedSets2013;
Tables HEAR_4_X*HEAR_3_X /NOROW NOCOL NOPERCENT; Run;

HEAR_3_X : Difficulty hearing conversation with one person in quiet room

HEAR_4_X (Difficulty hearing in a Nosier room)	No difficulty	Some difficulty	A lot of difficulty	Cannot do at all	Total
No difficulty	$\mathbf{1 1 6 0 3}$	$\mathbf{9 4}$	$\mathbf{0}$	$\mathbf{0}$	11697
Some difficulty	$\mathbf{3 3 7 3}$	$\mathbf{8 0 9}$	$\mathbf{8}$	$\mathbf{0}$	4190
A lot of difficulty	$\mathbf{2 5 3}$	$\mathbf{3 8 8}$	$\mathbf{1 3 8}$	$\mathbf{0}$	779
Cannot do at all	$\mathbf{8}$	$\mathbf{2 4}$	$\mathbf{1 6}$	$\mathbf{2 3}$	71
Total		15237	1315	162	23

Step 6. Create a HEARING INDICATOR (H_INDICATOR) based on the two additional hearing questions HEAR_3_X and HEAR_4_X.

The syntax below creates a HEARING INDICATOR (H_INDICATOR) based on the cross-tabulation of the two additional hearing questions HEAR_3_X and HEAR_4_X.

If $($ HEAR_3_X = 1 AND HEAR_4_X = 1$)$ OR (HEAR_3_X = 1 AND HEAR_4_X = 2) then H_INDICATOR $=1$;
Else If (HEAR_3_X = 2 AND (HEAR_4_X = 1 OR HEAR_4_X = 2)) OR (HEAR_3_X = 1 AND HEAR_4_X = 3) then H_INDICATOR = 2;
Else If (HEAR_3_X = 3 AND (HEAR_4_X = 1 OR HEAR_4_X = 2) OR (HEAR_3_X = 2 AND HEAR_4_X = 3) OR (HEAR_3_X = 1 AND HEAR_4_X = 4)) then H_INDICATOR = 3;
Else If ((HEAR_3_X = 3 AND HEAR_4_X = 3) OR HEAR_3_X = 4 OR (HEAR_4_X = 4 AND (HEAR_3_X = 2 OR HEAR_3_X = 3))) then H_INDICATOR = 4;

Proc Freq Data=SS. ExtendedSets2013;
Tables H_INDICATOR;
Run;

H_INDICATOR

Frequency Percent Valid Percent Cumulative Percent

Valid	1.00	14976	86.4	89.4	89.4
	2.00	1156	6.7	6.9	96.3
	3.00	404	2.3	2.4	98.7
	4.00	211	1.2	1.3	100.0
	Total	16747	96.7	100.0	
Missing		579	3.3		
Total		17326	100.0		

For more information on the Washington Group on Disability Statistics, visit:

COGNITION: Degree of difficulty remembering or concentrating

Step 7. Generate frequency distributions and cross-tabulations for Cognition domain questions and determine a Cognition Indicator.

COG_SS is the WG-SS Cognition question.
If COG_SS in $(1,2,3,4)$ then Cognition=COG_SS;
Else If COG_SS in $(7,8,9)$ then Cognition=.;
Proc Freq Data=SS. ExtendedSets2013;
Tables Cognition;
Run;

Cognition: Degree of difficulty remembering or concentrating

			Frequency	Percent	Valid Percent
Valid	No difficulty	13719	79.2	81.9	81.9
	Some difficulty	2632	15.2	15.7	97.6
	A lot of difficulty	382	2.2	2.3	99.9
	Cannot do at all	20	.1	.1	100.0
Total	16753	96.7	100.0		
Missing	573	3.3			
Total		17326	100.0		

If response to COG-SS is some difficulty, a lot of difficulty or cannot do at all, then the respondent is asked COG_1: whether they have difficulty remembering, concentrating or both.

If COG_1 in $(\mathbf{1}, \mathbf{2}, \mathbf{3})$ then COG_1_R=COG_1;
Else If COG_1 in $(7,8,9)$ then COG_1_R=.;
Proc Freq Data=SS. ExtendedSets2013;
Tables COG_1_R;
Run;
COG_1_R: Difficulty remembering, concentrating, or both?

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Difficulty remembering only	983	5.7	32.4	32.4
	Difficulty concentrating only	388	2.2	12.8	45.2
	Difficulty with both remembering and concentrating	1659	9.6	54.8	100.0
	Total	3030	17.5	100.0	
Missing	14296	82.5			
Total	17326	100.0			

For more information on the Washington Group on Disability Statistics, visit:

Step 8. Account for those who did not answer COG_1 (COG_SS is 1 - no difficulty and they were skipped) by recoding COG 1 1 to 0 (No difficulty).

If response to COG-SS is 1 : no difficulty, then the variable $\mathrm{COG}_{-} 1 _\mathrm{R}$ is recoded into $\mathrm{COG} _1 \mathrm{~A}$, and the value assigned is 0: no difficulty.

If COG _SS $=\mathbf{1}$ then $\mathrm{COG}_{-} 1 \mathrm{~A}=\mathbf{0}$;
Else COG_1A=COG_1_R;

Proc Freq Data=SS. ExtendedSets2013;
Tables COG_1A;
Run;
COG_1A: Difficulty remembering, concentrating, or both? (including no difficulty)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	13719	79.2	81.9	81.9
	Difficulty remembering only	983	5.7	5.9	87.8
	Difficulty concentrating only	388	2.2	2.3	90.1
	Difficulty with both remembering and concentrating	1659	9.6	9.9	100.0
	Total	16749	96.7	100.0	
Missing		577	3.3		
Total		17326	100.0		

Step 9. Generate frequency distribution for remaining cognition questions.
Frequency distribution of the Cognition extended REMEMBERING questions: COG_2 How often have difficulty remembering, and COG_3 Amount of things you have difficulty remembering.

If $\mathrm{COG} _2$ in $(1,2,3)$ then $\mathrm{COG} _2 _\mathrm{R}=\mathrm{COG} 2$;
Else If COG_2 in $(7,8,9)$ then COG_2_R=.;
If COG_3 in $(1,2,3)$ then COG_3_R=COG_3;
Else If COG_3 in $(7,8,9)$ then COG_3_R=.;

Proc Freq Data=SS. ExtendedSets2013;
Tables COG_2_R COG_3_R;
Run;

COG_2_R: How often have difficulty remembering?

		Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	Sometimes	1916	11.1	72.4	72.4	
	Often	513	3.0	19.4	91.8	
	All of the time	216	1.2	8.2	100.0	
	Total	2645	15.3	100.0		
	Missing		14681	84.7		
	Total		17326	100.0		

COG_3_R: Amount of things you have difficulty remembering?						
		Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	A few things	2119	12.2	80.3	80.3	
	A lot of things	386	2.2	14.6	94.9	
	Almost everything	134	.8	5.1	100.0	
	Total	2639	15.2	100.0		
Missing	14687	84.8				
Total	17326	100.0				

Step 10. Generate cross-tabulation of the two Cognition extended set questions $C O G_{-} 2 R$ by $C O G _3 _R$.
The syntax below produces a cross-tabulation of the two Extended Set REMEMBERING questions: COG_2_R: How often you have difficulty remembering and COG_3_R: The amount of things you have difficulty remembering to determine a single REMEMBERING INDICATOR.

Proc Freq Data=SS. ExtendedSets2013;
Tables COG_2_R*COG_3_R /NOROW NOCOL NOPERCENT;
Run;

COG_2_R: How often do you have difficulty remembering?

COG_3_R: Amount of things you have difficulty remembering?

difficulty remembering?	A few things	A lot of things	everything	Total	
How often have difficulty remembering?	Sometimes	$\mathbf{1 7 8 8}$	$\mathbf{1 0 5}$	$\mathbf{2 0}$	1913
	Often	$\mathbf{2 7 9}$	$\mathbf{1 9 7}$	$\mathbf{3 4}$	510
	All of the time	$\mathbf{5 1}$	$\mathbf{8 4}$	$\mathbf{8 0}$	215
Total	2118	386	134	2638	

Step 11. Create a Remembering Indicator based on distribution of $C O G_{-} 2 _R$ and $C O G _3 _R$.
The syntax below creates a REMEMBERING INDICATOR (R_INDICATOR) based on the two additional remembering questions (COG_2_R and COG_3_R).

For more information on the Washington Group on Disability Statistics, visit:

If Cognition is 1: no difficulty, then the Remembering Indicator is coded as 1: the lowest level of difficulty.

If (Cognition $=1$) then R_INDICATOR $=1$;
Else If ((COG_2_R = 1 AND COG_3_R = 1) OR (COG_3_R = 1 AND COG_2_R = 2) OR
(COG_3_R = 2 AND COG_2_R = 1)) then R_INDICATOR = 2;
Else If $\left(\mathrm{COG}_{2} 3 _\mathrm{R}=2\right.$ AND COG_2_R $\left.=2\right)$ then R_INDICATOR $=3$;
Else If $\left(\mathrm{COG}_{2} 3 _\mathrm{R}=3\right.$ OR COG_2_R $\left.=3\right)$ then R_INDICATOR $=4$;
Step 12. If COG_1A is coded as 2 (concentrating only), then the Remembering Indicator is coded as 5.
These 388 individuals are respondents who were not included in the Remembering Indicator since they had only difficulty concentrating.

Else If(COG_1A = 2) then R_INDICATOR = 5;
Else \quad R_INDICATOR $=0$;
Step 13. Generate frequency distribution of the Remembering Indicator.
Proc Freq Data=SS. ExtendedSets2013;
Tables R_INDICATOR;
Run;

		R_INDICATOR			Cumulative Percent
		Frequency	Percent	Valid Percent	
Valid	. 00	580	3.3	3.3	3.3
	1.00	13719	79.2	79.2	82.5
	2.00	2172	12.5	12.5	95.1
	3.00	197	1.1	1.1	96.2
	4.00	270	1.6	1.6	97.8
	5.00	388	2.2	2.2	100.0
	Total	17326	100.0	100.0	

Step 14. Supplement Remembering Indicator with information on difficulty concentrating.
The syntax below adds information on whether cognitive difficulties are compounded by difficulty concentrating in addition to difficulty remembering.
Create a COGNITION INDICATOR (COG_INDICATOR) based on R_INDICATOR (above) and the cognition question (COG_1_R).

The 388 individuals with 'concentrating only' were allocated as follows:

1. 357 with a little difficulty on Cognition question were classified as $\mathbf{2}$
2. 30 with a lot of difficulty on Cognition question were classified as $\mathbf{3}$
3. 1 with cannot do on Cognition question was classified as 4

Those with both remembering and concentrating difficulty were upgraded 36 individuals from $\mathbf{2}$ to $\mathbf{3}$, and 125 individuals from 3 to 4 .

COG_INDICATOR=R_INDICATOR;
If (R_INDICATOR $=5$ AND Cognition $=2$) then \quad COG_INDICATOR $=2$;
Else If (R_INDICATOR $=5$ AND Cognition $=3$) then COG_INDICATOR $=3$;
Else If (R_INDICATOR $=5$ AND Cognition $=4$) then COG_INDICATOR $=4$;
If (R_INDICATOR $=2$ AND COG_1_R = 3 AND Cognition = 3) then COG_INDICATOR = 3;
Else If (R_INDICATOR $=3$ AND COG_1_R $=3$ AND Cognition = 3) then
COG_INDICATOR $=4$;
Step 15. Generate frequency distribution of the Cognition Indicator.
Proc Freq Data=SS. ExtendedSets2013;
Tables COG_INDICATOR;
Run;
COG_INDICATOR

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	.00	580	3.3	3.3	3.3
	$\mathbf{1 . 0 0}$	13719	79.2	79.2	82.5
$\mathbf{2 . 0 0}$	2449	14.1	14.1	96.7	
$\mathbf{3 . 0 0}$	226	1.3	1.3	98.0	
4.00	352	2.0	2.0	100.0	

UPPER BODY

Step 16. Generate frequency distributions and cross-tabulations for Self-care and Upper body domain questions and determine the Upper Body Indicator.

SC_SS is the WG-SS Self-care question.
UB_1 is Difficulty raising 2 liter bottle of water from waist to eye level.
UB_2 is Difficulty using hands and fingers
If SC_SS in (1, 2, 3, 4) then Self_Care=SC_SS;
Else If SC_SS in $(7,8,9)$ then Self_Care=.;

If $U B _1$ in $(1,2,3,4)$ then $U B _1 _R=U B _1$;
Else If UB_1 in $(7,8,9)$ then UB_1_R=.;
If UB_2 in $(\mathbf{1}, \mathbf{2}, 3,4)$ then UB_2_R=UB_2;
Else If UB_2 in $(7,8,9)$ then UB_2_R=.;
First, calculate frequency distributions on the short set and two extended set questions.

Proc Freq Data=SS. ExtendedSets2013;
Tables Self_Care UB_1_R UB_2_R;
Run;
SELF_CARE: Degree of difficulty with self-care

	Frequency	Percent	Valid Percent	Cumulative Percent	
Valid	No difficulty	16029	92.5	95.7	95.7
	Some difficulty	544	3.1	3.2	98.9
	A lot of difficulty	114	.7	.7	99.6
	Cannot do at all	68	.4	.4	100.0
	Total	16755	96.7	100.0	
Missing	571	3.3			
Total	17326	100.0			

UB_1_R: Diff raising 2 liter bottle of water from waist to eye level

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	15677	90.5	93.6	93.6
	Some difficulty	743	4.3	4.4	98.0
	A lot of difficulty	167	1.0	1.0	99.0
	Cannot do at all	166	1.0	1.0	100.0
	Total	16753	96.7	100.0	
Missing	573	3.3			
Total	17326	100.0			

UB_2_R: Degree of difficulty using hands and fingers

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	15199	87.7	90.7	90.7
	Some difficulty	1229	7.1	7.3	98.1
	A lot of difficulty	255	1.5	1.5	99.6
	Cannot do at all	70	.4	.4	100.0
	Total	16753	96.7	100.0	
Missing	573	3.3			
Total	17326	100.0			

Step 17. Generate a cross-tabulation of the two Upper body Extended Set questions: UB_2_R and UB_1_R.

The syntax below produces a cross-tabulation of the two Extended Set questions: UB_1_R: Difficulty raising a 2 liter bottle of water from waste to eye level UB_2_R: Difficulty using hands and fingers to determine a single UPPER BODY INDICATOR (UB_INDICATOR).

For more information on the Washington Group on Disability Statistics, visit:

Proc Freq Data=SS. ExtendedSets2013;
Tables UB_2_R*UB_1_R /NOROW NOCOL NOPERCENT;
Run;

UB_1_R: Diff raising 2 liter bottle of water from waist to eye level

UB_2_R: Difficulty using hands and fingers		No difficulty	Some difficulty	A lot of difficulty	Cannot do at all	Total
Degree of difficulty using hands and fingers	No difficulty	14786	309	58	44	15197
	Some difficulty	782	355	51	40	1228
	A lot of difficulty	98	73	51	33	255
	Cannot do at all	9	5	7	49	70
Total		15675	742	167	166	16750

Step 18. Create an UPPER BODY INDICATOR (UB_INDICATOR) based on the two additional upper body questions $U B _2 _R$ and $U B _3 _R$.

Syntax below creates UB_INDICATOR based on the distribution in the cross-tabulation above.
If (UB_1_R = 4 OR UB_2_R = 4) then UB_INDICATOR = 4;
Else If UB_INDICATOR NE 4 AND (UB_1_R = 3 OR UB_2_R = 3)
then UB_INDICATOR $=3$;
Else If UB_INDICATOR NE 4 AND UB_INDICATOR NE 3 AND (UB_1_R = 2 OR UB_2_R
=2) then UB_INDICATOR = 2;
Else If UB_INDICATOR NE 4 AND UB_INDICATOR NE 3 AND UB_INDICATOR NE 2 AND (UB_1_R = 1 OR UB_2_R = 1) then UB_INDICATOR = 1.;

Proc Freq Data=SS. ExtendedSets2013;
Tables UB_INDICATOR;
Run;

			B_INDI	ATOR	
		Frequen cy	Percent	Valid Percent	Cumulative Percent
Valid	1.00	14790	85.4	88.3	88.3
	2.00	1448	8.4	8.6	96.9
	3.00	331	1.9	2.0	98.9
	4.00	187	1.1	1.1	100.0
	Total	16756	96.7	100.0	
Missing		570	3.3		
Total		17326	100.0		

For more information on the Washington Group on Disability Statistics, visit:

MOBILITY

Step 19. Generate frequency distributions and cross-tabulations for Mobility domain questions and determine Mobility Indicator.

MOB_SS is the WG-SS Mobility question.
MOB_4 is Difficulty walking 100 yards on level ground without aid or equipment.
MOB_5 is Difficulty walking 1/3rd mile on level ground without aid or equipment.
If MOB_SS in $(1,2,3,4)$ then Mobility=MOB_SS;
Else MOB_SS in $(7,8,9)$ then Mobility=.;
If MOB_4 in $(1,2,3,4)$ then MOB_4_R=MOB_4;
Else If MOB_4 in $(7,8,9)$ then $\mathrm{MOB}_{-} _$_R=;
If MOB_5 in $(1,2,3,4)$ then MOB_5_R=MOB_5;
Else If MOB_5 in $(7,8,9)$ then MOB_5_R=.;
First, calculate frequency distributions on the short set and two extended set WALKING questions.
Proc Freq Data=SS. ExtendedSets2013;
Tables Mobility MOB_4_R MOB_5_R;
Run;
Mobility: Degree of difficulty walking or climbing steps

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	13424	77.5	80.1	80.1
	Some difficulty	2165	12.5	12.9	93.0
	A lot of difficulty	792	4.6	4.7	97.7
	Cannot do at all	380	2.2	2.3	100.0
	Total	16761	96.7	100.0	
Missing		565	3.3		
Total		17326	100.0		

MOB_4_R: Diff walking 100 yards on level ground w/o aid or equipment

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	No difficulty	13892	80.2	84.8	84.8
	Some difficulty	1369	7.9	8.4	93.2
	A lot of difficulty	491	2.8	3.0	96.2
	Cannot do at all	623	3.6	3.8	100.0
	Total	16375	94.5	100.0	
Missing		951	5.5		
Total		17326	100.0		

For more information on the Washington Group on Disability Statistics, visit:

MOB_5_R: Diff walking 1/3rd mile on level ground w/o aid or equipment

					Cumulative Prequency
	Percent	Valid Percent	Percent		
Valid	No difficulty	13025	75.2	82.8	82.8
	Some difficulty	1650	9.5	10.5	93.3
	A lot of difficulty	708	4.1	4.5	97.8
	Cannot do at all	347	2.0	2.2	100.0
	Total	15730	90.8	100.0	
Missing	1596	9.2			
Total		17326	100.0		

Step 20. Generate a cross-tabulation of the walking distance questions: $M O B _4 _R$ and $M O B _5 _R$.
The syntax below produces a cross-tabulation of the two Extended Set WALKING questions: MOB_4_R: Difficulty walking 100 yards without equipment and MOB_5_R: Difficulty walking 1/3 mile without equipment to determine a single WALKING INDICATOR.

NOTE: 623 individuals who responded cannot do at all to MOB_4_R were not asked MOB_5_R and they do not appear in the table below. They are, however, accounted for in the WALKING indicator calculation.

Proc Freq Data=SS. ExtendedSets2013;
Tables MOB_4_R*MOB_5_R /NOROW NOCOL NOPERCENT;
Run;

MOB_4_R: Diff walking 100 yards on level ground w/o aid or equipment

MOB_5_R: Diff walking 1/3rd mile on level ground w/o aid or equipment

equipment	Some difficulty	A lot of difficulty	Cannot do at all	Total	
No difficulty	$\mathbf{1 2 9 5 0}$	$\mathbf{8 1 9}$	$\mathbf{6 3}$	$\mathbf{3 9}$	13871
Some difficulty	$\mathbf{7 2}$	$\mathbf{8 1 0}$	$\mathbf{3 4 3}$	$\mathbf{1 4 2}$	1367
A lot of difficulty	$\mathbf{3}$	$\mathbf{2 1}$	$\mathbf{3 0 1}$	$\mathbf{1 6 6}$	491
Cannot do at all (623)	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0
Total	13025	1650	707	347	15729

Step 21. Create a WALKING INDICATOR (WALK_INDICATOR) based on the two additional walking questions MOB_4_R and MOB_5_R.

Syntax below creates WALKING_INDICATOR based on the distribution in the cross-tabulation above.

For more information on the Washington Group on Disability Statistics, visit:

WALK_INDICATOR=0;
If $\left(\mathrm{MOB} _4 _\mathrm{R}=1\right.$ AND $\left(\mathrm{MOB} _5 _\mathrm{R}=1\right.$ OR MOB_5_R = 2)) then WALK_INDICATOR $=1$;
Else If (MOB_4_R =1 AND MOB_5_R = 3) OR (MOB_4_R = 2 AND (MOB_5_R =1 OR
MOB_5_R $=2$ OR MOB_5_R $=3$)) then WALK_INDICATOR = 2;
Else If (MOB_4_R =1 AND MOB_5_R = 4) OR (MOB_4_R = 3 AND (MOB_5_R = 1 OR MOB_5_R = 2 OR MOB_5_R = 3)) then WALK_INDICATOR = 3;
Else If $\left(\mathrm{MOB} _4 _\mathrm{R}=2\right.$ AND $\left.\mathrm{MOB} _5 _\mathrm{R}=4\right) \mathrm{OR}\left(\mathrm{MOB} _4 _\mathrm{R}=3\right.$ AND MOB_5_R $\left.=4\right)$ then WALK_INDICATOR $=4$;
Syntax below includes the $\mathbf{6 2 3}$ who responded cannot do at all to MOB_4_R into the WALKING INDICATOR.

If WALK_INDICATOR=0 then WALK_INDICATOR=.;
Proc Freq Data=SS. ExtendedSets2013;
Tables WALK_INDICATOR;
Run;

		WAL	NDIC		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1.00	13769	79.5	84.2	84.2
	2.00	1288	7.4	7.9	92.1
	3.00	364	2.1	2.2	94.3
	4.00	931	5.4	5.7	100.0
	Total	16352	94.4	100.0	
Missing		974	5.6		
Total		17326	100.0		

Step 22. Supplement Walking Indicator with information on difficulty Climbing steps (MOB_6).
Syntax below adds information from MOB_6 on difficulty climbing up or down 12 steps to create a combined Mobility Indicator (MOB_INDICATOR).

If MOB_6 in $(1,2,3,4)$ then MOB_6_R=MOB_6;
Else If MOB_6 in $(7,8,9)$ then MOB_6_R=.;
Proc Freq Data=SS. ExtendedSets2013;
Tables WALK_INDICATOR* MOB_6_R /NOROW NOCOL NOPERCENT;
Run;

MOB_6_R: Difficulty climbing up or down 12 steps

WALK_INDICATOR		No difficulty	difficulty	difficulty	Cannot do at all	Total
walk_INDICATOR2	1.00	13048	645	55	17	13765
	2.00	370	767	135	16	1288
	3.00	43	106	200	14	363
	4.00	79	242	226	384	931
Total		13540	1760	616	431	16347

According to the table above, the syntax below reclassifies:

1. 55 individuals with level 1 on the WALKING INDICATOR as level 2 on the MOBILITY INDICATOR
2. 17 individuals with level 1 on the WALKING INDICATOR and 135 individuals with level 2 on the WALKING INDICATOR as level 3 on the MOBILITY INDICATOR, and
3. 16 individuals with level 2 on the WALKING INDICATOR as level 4 on the MOBILITY INDICATOR.

Step 23. Create a mobility indication (MOB_INDICATOR) with information garnered from crosstabulation above.

MOB_INDICATOR = WALK_INDICATOR;
If (WALK_INDICATOR $=2$ AND MOB_6_R = 3) then MOB_INDICATOR = 3;
Else If (WALK_INDICATOR =1 AND MOB_6_R = 3) then MOB_INDICATOR = 2;
Else If (WALK_INDICATOR $=2$ AND MOB_6_R $=4$) then MOB_INDICATOR $=4$;
Else If (WALK_INDICATOR $=1$ AND MOB_6_R $=4$) then $M O B _I N D I C A T O R=3$;
Proc Freq Data=SS. ExtendedSets2013;
Tables MOB_INDICATOR;
Run;

		MO	IDICA		
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1.00	13697	79.1	83.8	83.8
	2.00	1192	6.9	7.3	91.1
	3.00	516	3.0	3.2	94.2
	4.00	947	5.5	5.8	100.0
	Total	16352	94.4	100.0	
Missing		974	5.6		
Total		17326	100.0		

For more information on the Washington Group on Disability Statistics, visit:

ANXIETY

Step 24.Generate frequency distribution on ANX_1.
First, calculate frequency distributions on ANX_1: How often do you feel worried, nervous or anxious?
If ANX_1 in $(1,2,3,4,5)$ then ANX_1_R=ANX_1;
Else If ANX_1 in $(7,8,9)$ then ANX_1_R=.;
Proc Freq Data=SS. ExtendedSets2013;
Tables ANX_1_R;
Run;
ANX_1_R: How often feel worried, nervous, or anxious?

| | | Frequency | Percent | Valid Percent | Cumulative Percent |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Valid | Daily | 1632 | 9.4 | 9.8 | 9.8 |
| | Weekly | 1872 | 10.8 | 11.2 | 21.0 |
| | Monthly | 1558 | 9.0 | 9.3 | 30.4 |
| | A few times a year | 4898 | 28.3 | 29.4 | 59.7 |
| | Never | 6714 | 38.8 | 40.3 | 100.0 |
| | Total | 16674 | 96.2 | 100.0 | |
| Missing | 652 | 3.8 | | | |
| Total | 17326 | 100.0 | | | |

Step 25. The syntax below recodes ANX_3 into ANX_3Y

1) to create a NOT ASKED category based on those who responded NEVER to ANX_1_R and
2) to place "SOMEWHERE BETWEEN" numerically in-between "A LITTLE" and "A LOT".

If $A N X _3=1$ then $A N X _3 Y=1$;
Else If ANX_3 $=2$ then ANX_3Y=3;
Else If ANX_3 $=3$ then ANX_3Y=2;
Else If ANX_3 in $(7,8,9)$ then ANX_3Y=.;
Recode ANX_3Y to 0 (not asked) If ANX_1 is 5 (Never).
If ANX_1 $=5$ then ANX_3Y=0;
Proc Freq Data=SS. ExtendedSets2013;
Tables ANX_3Y;
Run;

For more information on the Washington Group on Disability Statistics, visit:

ANX_3Y: Level of feelings last time felt worried/nervous/anxious

			Valid Percent	Cumulative Percent	
Valid	Not asked	6714	38.8	40.3	40.3
	A little	5700	32.9	34.2	74.5
	In between a little and a lot	3076	17.8	18.5	92.9
	A lot	1176	6.8	7.1	100.0
	Total	16666	96.2	100.0	
Missing	660	3.8			
Total	17326	100.0			

Step 26. Generate a cross-tabulation of the anxiety Extended Set questions: ANX_1_R and ANX_3Y.
The syntax below produces a cross-tabulation of ANX_1_R: How often you felt worried, nervous or anxious (a measure of frequency) and ANX_3Y: The level of those feeling the last time you felt worried, nervous or anxious (a measure of intensity) - used to determine a single ANXIETY INDICATOR (ANX_INDICATOR).

Proc Freq Data=SS. ExtendedSets2013;
Tables ANX_3Y*ANX_1_R/NOROW NOCOL NOPERCENT;
Run;

| ANX_3Y: Level of feelings last time
 felt worried, nervous or anxious | ANX_1_R: How often feel worried, nervous or anxious? | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Daily | Weekly | Monthly | A Few Times | A Year | Never | Total |
| Not asked | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{6 7 1 4}$ | 6714 | |
| A little | $\mathbf{4 8 9}$ | $\mathbf{8 8 7}$ | $\mathbf{8 9 7}$ | $\mathbf{3 4 1 7}$ | $\mathbf{0}$ | 5690 | |
| In between a little and a lot | $\mathbf{5 8 9}$ | $\mathbf{7 2 5}$ | $\mathbf{5 3 5}$ | $\mathbf{1 2 2 1}$ | $\mathbf{0}$ | 3070 | |
| A lot | $\mathbf{5 4 8}$ | $\mathbf{2 5 6}$ | $\mathbf{1 2 3}$ | $\mathbf{2 4 8}$ | $\mathbf{0}$ | 1175 | |
| Total | 1626 | 1868 | 1555 | 4886 | 6714 | $\mathbf{1 6 6 4 9}$ | |

Step 27. Create an ANXIETY INDICATOR (ANX_INDICATOR) based on the two anxiety questions $A N X _1 _R$ and $A N X _3 Y$.

Syntax below creates ANX_INDICATOR based on the distribution in the cross-tabulation above.
If (missing(ANX_1_R) OR missing(ANX_3Y)) then ANX_INDICATOR=.;
Else If (ANX_3Y le 4 AND (ANX_1_R = 4 OR ANX_1_R = 5)) then ANX_INDICATOR=1;
Else If ((ANX_1_R = 3) OR (ANX_1_R LT 3 AND ANX_3Y=1) OR
(ANX_1_R = 2 AND ANX_3Y = 2)) then ANX_INDICATOR = 2;
Else If ((ANX_1_R = 1 AND ANX_3Y = 2) OR (ANX_1_R = 2 AND ANX_3Y = 3))
then ANX_INDICATOR $=3$;
Else If $($ ANX_1_R $=1$ AND ANX_3Y = 3) then ANX_INDICATOR $=4$;

Proc Freq Data=SS. ExtendedSets2013;
Tables ANX_INDICATOR;
Run;

DEPRESSION

Step 28.Generate frequency distribution on $D E P_{1} 1$.
First, calculate frequency distributions on DEP_1: How often do you feel depressed?
If DEP_1 in $(\mathbf{1 , 2 , 3 , 4 , 5)}$ then DEP_1_R=DEP_1;
Else If DEP_1 in $(7,8,9)$ then $D E P _1 _R=$;
Else DEP_1_R=.;
Proc Freq Data=SS. ExtendedSets2013;
Tables DEP_1_R;
Run;

DEP_1_R: How often do you feel depressed?

Frequency Percent Valid Percent Cumulative Percent

| | | Frequency | Percent | Valid Percent | Cumulative Percent |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| Valid | Daily | 756 | 4.4 | 4.5 | 4.5 |
| | Weekly | 926 | 5.3 | 5.6 | 10.1 |
| | Monthly | 1038 | 6.0 | 6.2 | 16.3 |
| | A few times a year | 4012 | 23.2 | 24.1 | 40.4 |
| | Never | 9929 | 57.3 | 59.6 | 100.0 |
| | Total | 16661 | 96.2 | 100.0 | |
| Missing | 665 | 3.8 | | | |
| Total | 17326 | 100.0 | | | |

Step 29. The syntax below recodes DEP_3 into DEP_3Y to place "SOMEWHERE BETWEEN" numerically in-between " A LITTLE" and " A LOT". It also creates the category NOT ASKED, if DEP_1 is NEVER (1)

If DEP_3 $=\mathbf{1}$ then DEP_3Y=1;
Else If DEP_3=2 then DEP_3Y=3;
Else If DEP_3=3 then DEP_3Y=2;
Else If DEP_3in $(7,8,9)$ then DEP_3Y=.;
If $\operatorname{DEP} _1=5$ then DEP_3Y=0;
Proc Freq Data=SS. ExtendedSets2013;
Tables DEP_3Y;
Run;
DEP_3Y: Level of feelings last time felt depressed

| | | Frequency | Percent | Valid Percent | Cumulative Percent |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Valid | Not asked | 9929 | 57.3 | 59.6 | 59.6 |
| | A little | 3775 | 21.8 | 22.7 | 82.3 |
| | In between a little and a lot | 2016 | 11.6 | 12.1 | 94.4 |
| | A lot | 935 | 5.4 | 5.6 | 100.0 |
| | Total | 16655 | 96.1 | 100.0 | |
| Missing | 671 | 3.9 | | | |
| Total | 17326 | 100.0 | | | |

Step 30. Generate a cross-tabulation of the depression Extended Set questions: DEP_1_R and DEP_3Y.
The syntax below produces a cross-tabulation of DEP_1_R: How often do you feel depressed (a measure of frequency) and DEP_3Y: The level of those feeling the last time you felt depressed (a measure of intensity) - used to determine a single DEPRESSION INDICATOR (DEP_INDICATOR).

Proc Freq Data=SS. ExtendedSets2013;
Tables DEP_3Y*DEP_1_R/NOROW NOCOL NOPERCENT; Run;

DEP_1_R: How often do you feel depressed?

| DEP_3Y: Level of feelings last time
 felt depressed | Daily | Weekly | Monthly | A Few Times
 A Year | Never | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Not asked | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | | 9929 |
| A little | $\mathbf{1 6 1}$ | $\mathbf{3 4 6}$ | $\mathbf{5 4 8}$ | $\mathbf{2 7 0 8}$ | $\mathbf{0}$ | 3763 |
| In between a little and a lot | $\mathbf{2 0 9}$ | $\mathbf{3 8 4}$ | $\mathbf{3 7 8}$ | $\mathbf{1 0 4 2}$ | $\mathbf{0}$ | $\mathbf{2 0 1 3}$ |
| A lot | $\mathbf{3 8 1}$ | $\mathbf{1 9 1}$ | $\mathbf{1 1 2}$ | $\mathbf{2 4 8}$ | $\mathbf{0}$ | $\mathbf{9 3 2}$ |
| Total | 751 | $\mathbf{9 2 1}$ | 1038 | $\mathbf{3 9 9 8}$ | $\mathbf{9 9 2 9}$ | $\mathbf{1 6 6 3 7}$ |

For more information on the Washington Group on Disability Statistics, visit:

Step 31. Create a DEPRESSION INDICATOR (DEP_INDICATOR) based on the two depression questions $D E P_{-} 1 _R$ and $D E P _3 Y$.

Syntax below creates DEP_INDICATOR based on the distribution in the cross-tabulation above.
If (missing(DEP_1_R) OR missing(DEP_3Y)) then DEP_INDICATOR = .;
Else If (DEP_3Y Le 4 AND (DEP_1_R = 4 OR DEP_1_R = 5)) then DEP_INDICATOR=1;
Else If ((DEP_1_R = 3) OR (DEP_1_R LT 3 AND DEP_3Y=1) OR
(DEP_1 = 2 AND DEP_3Y = 2)) then DEP_INDICATOR = 2;
Else If ((DEP_1_R = 1 AND DEP_3Y = 2) OR (DEP_1_R = 2 AND DEP_3Y = 3))
then DEP_INDICATOR = 3;
Else If $\left(D E P _1 _R=1\right.$ AND DEP_3Y = 3) then DEP_INDICATOR = 4;
Proc Freq Data=SS. ExtendedSets2013;
Tables DEP_INDICATOR;
Run;

DEP_INDICATOR

			Valid	Cumulative Percent	
Valid	$\mathbf{1 . 0 0}$	13927	80.4	83.7	83.7
	$\mathbf{2 . 0 0}$	1929	11.1	11.6	95.3
	$\mathbf{3 . 0 0}$	400	2.3	2.4	97.7
	4.00	381	2.2	2.3	100.0
	Total	16637	96.0	100.0	
Missing	689	4.0			
Total	17326	100.0			

PAIN
Step 32.Generate frequency distribution on PAIN_2.
First, calculate frequency distributions on PAIN_2: Frequency of pain in the past 3 months.
If PAIN_2 in (1, 2, 3, 4) then PAIN_2_R=PAIN_2;
Else If PAIN_2 in $(7,8,9)$ then PAIN_2_R=.;
Proc Freq Data=SS. ExtendedSets2013;
Tables PAIN_2_R;
Run;

PAIN_2_R: Frequency of pain in past 3 months

			Frequency	Percent	Valid Percent
Cumulative Percent					
	Never	6636	38.3	39.8	39.8
	Some days	6556	37.8	39.3	79.2
	Most days	1227	7.1	7.4	86.5
	Every day	2245	13.0	13.5	100.0
	Total	16664	96.2	100.0	
Missing	662	3.8			
Total	17326	100.0			

Step 33. The syntax below recodes PAIN_4 into PAIN_4Y to place "SOMEWHERE BETWEEN" numerically in-between "A LITTLE" and "A LOT". It also creates the category NOT ASKED, if PAIN_2 is NEVER (1).

If $\operatorname{PAIN_ 4}=1$ then $\operatorname{PAIN_ 4Y=1;~}$
Else If PAIN_4 =2 then PAIN_4Y=3;
Else If PAIN_4 =3 then PAIN_4Y=2;
Else If PAIN_4 in $(7,8,9)$ then PAIN_4Y=.;
If PAIN_2=1 then PAIN_4Y=0;

Proc Freq Data=SS. ExtendedSets2013;
Tables PAIN_4Y;
Run;
PAIN_4Y: How much pain you had last time you had pain?

| | | Frequency | Percent | Valid Percent | Cumulative Percent |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Valid | Not asked | 6636 | 38.3 | 39.8 | 39.8 |
| | A little | 4865 | 28.1 | 29.2 | 69.0 |
| | In between a little and a lot | 3296 | 19.0 | 19.8 | 88.8 |
| | A lot | 1869 | 10.8 | 11.2 | 100.0 |
| | Total | 16666 | 96.2 | 100.0 | |
| Missing | 660 | 3.8 | | | |
| Total | 17326 | 100.0 | | | |
| Stp | | | | | |

Step 34. Generate a cross-tabulation of the PAIN Extended Set questions: PAIN_2_R and PAIN_4Y.
The syntax below produces a cross-tabulation of PAIN_2_R: Frequency of pain in the past 3 months and PAIN_4Y: How much pain you has the last time you had pain (a measure of intensity) - used to determine a single PAIN INDICATOR (P_INDICATOR).

Proc Freq Data=SS. ExtendedSets2013;
Tables PAIN_4Y*PAIN_2_R/NOROW NOCOL NOPERCENT;
Run;

PAIN_2_R: Frequency of pain in past 3 months

PAIN_4Y: How much pain you had last time you had pain		Never	Some days	$\begin{gathered} \text { Most } \\ \text { days } \\ \hline \end{gathered}$	Every day	Total
	Not asked	6636	0	0	0	6636
	A little	0	4136	323	401	4860
	In between a little and a lot	0	1772	624	896	3296
	A lot	0	645	278	944	1867
Total		6636	6553	1225	2241	16655

Step 35. Create a PAIN INDICATOR (P_INDICATOR) based on the two PAIN questions PAIN_2_R and PAIN_4Y.

Syntax below creates P_INDICATOR based on the distribution in the cross-tabulation above.
If $($ PAIN_2_R = 1) OR (PAIN_4Y = 1 AND (PAIN_2_R = 2 OR PAIN_2_R = 3)) then P_INDICATOR = 1;
Else If ((PAIN_2_R $=2$ AND (PAIN_4Y $=2$ OR PAIN_4Y $=3)$) OR (PAIN_2_R $=3$ AND PAIN_4Y = 2) OR (PAIN_2_R = 4 AND PAIN_4Y = 1)) then P_INDICATOR = 2;
Else If $($ PAIN_2_R $=3$ AND PAIN_4Y = 3) OR (PAIN_2_R = 4 AND PAIN_4Y = 2) then P_INDICATOR = 3;
Else If $($ PAIN_2_R $=4$ AND PAIN_4Y = 3) then P_INDICATOR $=4$;

Proc Freq Data=SS. ExtendedSets2013;
Tables P_INDICATOR;
Run;

P_INDICATOR

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	$\mathbf{1 . 0 0}$	11095	64.0	66.6	66.6
	$\mathbf{2 . 0 0}$	3442	19.9	20.7	87.3
	$\mathbf{3 . 0 0}$	1174	6.8	7.0	94.3
	$\mathbf{4 . 0 0}$	944	5.4	5.7	100.0
	Total	16655	96.1	100.0	
Missing	671	3.9			
Total	17326	100.0			

FATIGUE (Tired)

Step 36.Generate frequency distribution on FATIGUE Extended Set questions Tired_1, Tired_2 and Tired_3.
First, calculate frequency distributions on TIRED_1: How often you felt tired in the past 3 months.

If TIRED_1 in $(1,2,3,4)$ then TIRED_1_R=TIRED_1;
Else If TIRED_1 in $(7,8,9)$ then TIRED_1_R=.;
Proc Freq Data=SS. ExtendedSets2013;
Tables TIRED_1_R;
Run;

TIRED_1_R:How often felt very tired or exhausted in past 3 months

		Frequen cy	Percent	Valid Percent	Cumulative Percent
Valid	Never	5619	32.4	33.7	33.7
	Some days	8391	48.4	50.4	84.1
	Most days	1632	9.4	9.8	93.9
	Every day	1019	5.9	6.1	100.0
Total	16661	96.2	100.0		
Missing	665	3.8			
Total		17326	100.0		

Step 37. Recode Tired_2 to 0 (not asked) if Tired_1 is 1 (Never).
If response to TIRED_1 is 1: Never, then TIRED_2 (How long most recent tired or exhausted feelings lasted) is not asked. This variable is recoded so these individuals are included in the syntax below.

If TIRED $_2$ in $(1,2,3)$ then TIRED_2_R=TIRED_2;
Else If TIRED_2 in $(7,8,9)$ then TIRED_2_R=.;
Else TIRED_2_R=;;
If TIRED_1 =1 then TIRED_2_R=0;
Proc Freq Data=SS. ExtendedSets2013;
Tables TIRED_2_R;
Run;
TIRED_2_R: How long most recent tired or exhausted feelings lasted?

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Not asked	5619	32.4	33.8	33.8
	Some of the day	8036	46.4	48.3	82.0
	Most of the day	1955	11.3	11.7	93.8
	All of the day	1036	6.0	6.2	100.0
	Total	16646	96.1	100.0	
Missing		680	3.9		
Total		17326	100.0		

For more information on the Washington Group on Disability Statistics, visit:

Step 38. The syntax below recodes TIRED_3 into TIRED_3Y to place "SOMEWHERE BETWEEN" numerically in-between " A LITTLE" and " A LOT".

Also, if response to TIRED_1 is 1: Never, then TIRED_3 (Level of tiredness) is not asked. This variable is recoded so these individuals are included in the syntax below.

If TIRED_3 $=\mathbf{1}$ then TIRED_3Y=1;
Else If TIRED_3 =2 then TIRED_3Y=3;
Else If TIRED_3 $=3$ then TIRED_3Y=2;
Else If TIRED_3 in $(7,8,9)$ then TIRED_3Y=.;
If TIRED $_1=1$ then TIRED $_3 Y=0$;

Proc Freq Data=SS. ExtendedSets2013;
Tables TIRED_3Y;
Run;
TIRED_3Y: Level of tiredness

			Valid Prequency	Cumulative Percent	
Valid	Not asked	5619	32.4	33.8	33.8
	A little	4912	28.4	29.5	63.3
	In between a little and a lot	4030	23.3	24.2	87.5
	A lot	2087	12.0	12.5	100.0
Total	16648	96.1	100.0		
Missing	678	3.9			
Total	17326	100.0			

Step 39. Generate a cross-tabulation of the FATIGUE Extended Set questions: TIRED_1_R, TIRED_2_R and TIRED_3Y.

The syntax below produces a cross-tabulation of TIRED_1_R: How often you felt tired or exhausted in the past 3 months (a measure of frequency) and TIRED_2_R: How long those feelings lasted (a measure of duration) and TIRED_3Y: The level of tiredness (a measure of intensity) - used to determine a single TIRED INDICATOR (T_INDICATOR).

Proc Freq Data=SS. ExtendedSets2013;
Tables TIRED_3Y* TIRED_2_R*TIRED_1_R /NOROW NOCOL NOPERCENT; Run;

TIRED_3Y: Level of tiredness: Intensity	TIRED_2: How long feelings lasted: Duration	exhausted in past 3 months: Frequency				Total
		Never	Some days	$\begin{aligned} & \text { Most } \\ & \text { days } \end{aligned}$	Every day	
Not asked	Not asked	5619				5619
A little	Some of the day		4066	264	124	4454
	Most of the day		252	73	27	352
	All of the day		68	15	18	101
In between	Some of the day		2224	400	166	2791
	Most of the day		497	266	123	887
	All of the day		194	71	84	349
A lot	Some of the day		536	165	84	785
	Most of the day		297	255	160	713
	All of the day		237	118	230	585
TOTAL		5619	8371	1627	1016	16633

Step 40. Create a FATIGUE INDICATOR (T_INDICATOR) based on the three FATIGUE questions TIRED_1_R, TIRED_2_R and TIRED_3Y.

Syntax below creates T_INDICATOR based on the distribution in the cross-tabulation above.
If $($ TIRED_1_R $=1)$ then T_INDICATOR $=1$;
Else If (TIRED_1_R = 2 AND TIRED_2_R =1 AND TIRED_3Y = 1) then T_INDICATOR = $\mathbf{1}$;
Else If (TIRED_1_R = 3 AND TIRED_2_R =1 AND TIRED_3Y =1) then T_INDICATOR =1;
Else If (TIRED_1_R in $(2,3,4)$ AND TIRED_2_R in $(2,3)$ AND TIRED_3Y $=1)$ then T_INDICATOR $=2$;
Else If (TIRED_1_R in $(2,3,4)$ AND TIRED_2_R $=1$ AND TIRED_3Y $=2$) then T_INDICATOR $=2$;
Else If (TIRED_1_R $=2$ AND TIRED_2_R $=2$ AND TIRED_3Y $=2$) then T_INDICATOR $=2$;
Else If (TIRED_1_R =4 AND TIRED_2_R =1 AND TIRED_3Y =1) then T_INDICATOR $=2$;
Else If (TIRED_1_R in $(3,4)$ AND TIRED_2_R $=2$ AND TIRED_3Y $=2$) then T_INDICATOR $=3$;
Else If (TIRED_1_R in $(2,3,4)$ AND TIRED_2_R $=3$ AND TIRED_3Y $=2$) then T_INDICATOR $=3$;
Else If (TIRED_1_R in $(2,3,4)$ AND TIRED_2_R $=1$ AND TIRED_3Y $=3$) then T_INDICATOR $=3$;
Else If (TIRED_1_R in $(2,3)$ AND TIRED_2_R $=2$ AND TIRED_3Y $=3$) then T_INDICATOR $=3$;
Else If (TIRED_1_R $=2$ AND TIRED_2_R $=3$ AND TIRED_3Y $=3$) then T_INDICATOR $=3$;
Else If (TIRED_1_R $=4$ AND TIRED_2_R $=2$ AND TIRED_3Y $=3$) then T_INDICATOR $=4$;
Else If (TIRED_1_R in $(3,4)$ AND TIRED_2_R $=3$ AND TIRED_3Y $=3$) then T_INDICATOR $=4$;
Else T_INDICATOR = ;;
Proc Freq Data=SS. ExtendedSets2013;
Tables T_INDICATOR;
Run;

T_Indicator					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1.00	9949	57.4	59.8	59.8
	2.00	3864	22.3	23.2	83.0
	3.00	2312	13.3	13.9	96.9
	4.00	508	2.9	3.1	100.0
	Total	16633	96.0	100.0	
Missing		693	4.0		
Total		17326	100.0		

Creating Disability Status Indicators

Type of Disability Indicator		Number of Questions
SS_1	Short Set (SS)	6
Extended Set		
ES_1	Upper Body-indicator + PFAD (4)*	25
ES_2	$\mathbf{S S}+\underline{\text { Hearing-indicator, Mobility-indicator, Cognition-indicator, }}$ Upper Body-indicator + AD (4)	20
Short Set Enhanced		
ES_3	$\mathbf{S S}+$ Upper Body-indicator + AD (4) ${ }^{\dagger}$	12

* PFAD (4): Pain, Fatigue, Anxiety and Depression Indicators at level 4
\dagger AD (4): Anxiety and Depression Indicators at level 4

SS_1: WG Short Set Disability Indicator based on the 6 short set questions

The syntax below calculates the WG Short Set Disability Indicator based on the six short set questions SS_1 at the recommended cut-off. The level of inclusion is: at least 1 domain/question is coded A LOT OF DIFFICULTY or CANNOT DO AT ALL.

If (missing(vision) AND missing(hearing) AND missing(mobility) AND
missing(communication) AND missing(Self_Care) AND missing(Cognition)) then SS_1 = .;
Else If ((vision $=3$ OR vision $=4)$ OR (hearing= 3 OR hearing $=4$) OR
(mobility $=3$ OR mobility $=4$) OR (communication=3 OR communication = 4) OR
$($ Self_Care $=3$ OR Self_Care $=4)$ OR $($ Cognition $=3$ OR Cognition $=4)$) then SS_1 =1; Else SS_1 = 2;

Proc Freq Data=SS. ExtendedSets2013;
Tables SS_1;
Run;

SS_1: WG Short Set Disability Identifier					
		Frequency	Percent	Valid Percent	Weighted Estimate
Valid	WITHOUT DISABILITY	14905	86.0	88.8	90.5
	WITH DISABILITY	1872	10.8	11.2	9.5
	Total	16777	96.8	100.0	
Missing		549	3.2		
Total		17326	100.0		

 + PFAD (4)

The syntax below calculates an Extended Set Disability Indicator (ES_1) based on 25 questions at the recommended cut-off. The level of inclusion is: at least 1 domain/question is coded A LOT OF DIFFICULTY or CANNOT DO AT ALL for the six short set question; severity levels 3 or 4 for the Hearing-, Mobility-, Cognition- and Upper body-Indicators; and severity level 4 for Pain-, Fatigue-, Anxiety- and Depression-Indicators.

```
If ( missing(SS_1) AND (H_INDICATOR LT 1 OR H_INDICATOR GT 4) AND
(MOB_INDICATOR LT }1\mathrm{ OR MOB_INDICATOR GT 4) AND missing(COM_SS) AND
missing(SC_SS) AND (COG_INDICATOR LT 1 OR COG_INDICATOR GT 4) AND
(UB_INDICATOR LT 1 OR UB_INDICATOR GT 4) AND missing(P_INDICATOR) AND
(T_INDICATOR LT 1 OR T_INDICATOR GT 4) AND (ANX_INDICATOR LT 1 OR
ANX_INDICATOR GT 4) AND (DEP_INDICATOR LT 1 OR DEP_INDICATOR GT 4))
then ES_1 =.;
Else If (SS_1 = 1 OR (H_INDICATOR = 3 OR H_INDICATOR = 4) OR (MOB_INDICATOR
= 3 OR MOB_INDICATOR = 4) OR (COG_INDICATOR = 3 OR COG_INDICATOR = 4) OR
(UB_INDICATOR = 3 OR UB_INDICATOR = 4) OR P_INDICATOR = 4 OR T_INDICATOR
= 4 OR ANX_INDICATOR = 4 OR DEP_INDICATOR = 4) then ES_1 = 1;
Else ES_1 = 2;
Proc Freq Data=SS. ExtendedSets2013;
Tables ES_1;
Run;
```

		Frequency	Percent	Valid Percent	Weighted Estimate
Valid	WITHOUT DISABILITY	13823	79.8	79.8	82.3
	WITH DISABILITY	3503	20.2	20.2	17.7
	Total	17326	100.0	100.0	

ES_2: SS_1 + Hearing-indicator, Mobility-indicator, Cognition-indicator + $\underline{\text { Upper Body-indicator }}$ + AD (4)

The syntax below calculates an Extended Set Disability Indicator (ES_2) based on 20 questions at the recommended cut-off. The level of inclusion is: at least 1 domain/question is coded A LOT OF DIFFICULTY or CANNOT DO AT ALL for the six short set question; severity levels 3 or 4 for the Hearing-, Mobility-, Cognition- and Upper body-Indicators; and severity level 4 for Anxiety- and Depression-Indicators.

```
If (missing(SS_1) AND (H_INDICATOR LT 1 OR H_INDICATOR GT 4) AND
(MOB_INDICATOR LT 1 OR MOB_INDICATOR GT 4) AND missing(COM_SS) AND
missing(SC_SS) AND (COG_INDICATOR LT 1 OR COG_INDICATOR GT 4) AND
(UB_INDICATOR LT 1 OR UB_INDICATOR GT 4) AND (ANX_INDICATOR LT 1 OR
ANX_INDICATOR GT 4) AND (DEP_INDICATOR LT 1 OR DEP_INDICATOR GT 4))
then ES_2 = .;
Else If (SS_1 = 1 OR (H_INDICATOR = 3 OR H_INDICATOR = 4) OR (MOB_INDICATOR
= 3 OR MOB_INDICATOR = 4) OR (COG_INDICATOR = 3 OR COG_INDICATOR = 4) OR
(UB_INDICATOR = 3 OR UB_INDICATOR = 4) OR ANX_INDICATOR = 4 OR
DEP_INDICATOR = 4) then ES_2 = 1;
```

Else ES_2 = 2;
Proc Freq Data=SS. ExtendedSets2013;
Tables ES_2;
Run;

ES_2: WG-ES Disability Indicator based on 9 domains and 20 questions

			Valid Frequency	Weighted Percent	Percent Estimate
Valid	WITHOUT DISABILITY	14222	82.1	82.1	84.6
	WITH DISABILITY	3104	17.9	17.9	15.4
	Total	17326	100.0	100.0	

```
ES_3: SS_1 + Upper Body-indicator + AD (4)
```

The syntax below calculates the WG Short Set ENHANCED Disability Indicator (ES_3) based on the 12 questions at the recommended cut-off. The level of inclusion is: at least 1 domain/question is coded A LOT OF DIFFICULTY or CANNOT DO AT ALL for the six short set question; severity levels 3 or 4 for the Upper body-Indicators; and severity level 4 for Anxiety- and Depression-Indicators.

If (missing(vision) AND missing(hearing) AND missing(mobility) AND missing(communication) AND missing(Self_Care) AND missing(Cognition) AND missing(UB_INDICATOR) AND missing(ANX_INDICATOR) AND missing(DEP_INDICATOR)) then ES_3 = .;
Else If ((vision $=3$ OR vision $=4)$ OR (hearing= 3 OR hearing $=4$) OR (mobility= 3 OR mobility $=4$) OR (communication= 3 OR communication = 4) OR (Self_Care $=3$ OR Self_Care = 4) OR (Cognition = 3 OR Cognition = 4) OR (UB_INDICATOR=3 OR UB_INDICATOR=4) OR ANX_INDICATOR = 4 OR DEP_INDICATOR = 4)
then ES_3 = 1;
Else ES_3 = 2;
Proc Freq Data=SS. ExtendedSets2013;
Tables ES_3;
Run;

ES_3: WG-SS Enhanced Disability Indicator based on 9 domains and 12 questions

			Frequency	Percent	Valid Percent
Valid	WITHOUT DISABILITY	14393	83.1	85.8	Weighted Estimate
	WITH DISABILITY	2384	13.8	14.2	12.3
	Total	16777	96.9	100.0	
Missing		549	3.2		
Total	17326	100.1			

POSTSCRIPT: Why exclude Pain and fatigue?

Of note is the exclusion of the pain and fatigue domains from several of the Disability Identifiers above. There has been considerable discussion within the WG on these domains. They are not, strictly speaking, domains of functioning - and our analyses indicated that they are both highly correlated with other domains - and that the rates of disability with the inclusion of these domains can be very high. Finally, in terms of international comparability, these domains are less universal; that is, they are more susceptible to local, socio-cultural influences than other domains of functioning.

For these reasons, we chose to exclude them from several of these analyses, though they can be included in supplemental analyses carried out by NSOs on a national basis.

APPENDIX 1: SAS Code used in the NHIS data file

```
Data ES.ExtendedSets13;
    Set NHIS.Funcdisb13;
    *Step 1. Generate frequency distribution for each domain question: Vision
    VIS_SS is the WG-SS Vision question;
    *Convert 7,8,9 to missing;
    If VIS_SS2 in (1,2,3,4) then Vision=VIS_SS2;
Else Vision=.;
*Step 2. Generate frequency distribution for each domain question:
Communication
    COM_SS is the WG-SS Communication question;
*Convert 7,8,9 to missing;
If COM_SS in (1,2,3,4) then communication=COM_SS;
Else communication=.;
*Step 3. Generate frequency distribution for each domain question (including
domains with multiple questions): Hearing
    HEAR SS is the WG-SS Hearing question.
    HEAR_3 is Difficulty hearing conversation with one person in quiet room.
    HEAR_4 is Difficulty hearing one person in noisier room;
*Convert 7,8,9 to;
If HEAR_SS2 in (1,2,3,4) then hearing=HEAR_SS2;
Else If HEAR_SS2 in (7,8,9 ) then hearing=.;
If HEAR_3 in (1,2,3,4) then HEAR_3_R=HEAR_3;
Else If HEAR_3 in (7,8,9 ) then HEAR_3_R=.;
If HEAR 4 in (1,2,3,4) then HEAR 4 R=HEAR 4;
Else If }\mp@subsup{}{}{-}\mathrm{ HEAR_4 in (7,8,9 ) then 'HEAR_4_R=.;
*Step 4. For Hearing questions, recode Hear_3_R and Hear_4_R to 4 (cannot do
at all) if HEAR_SS2 is 4 (Cannot do at all).
IF HEAR SS = 4 \overline{HEAR 3 R = 4.}
IF HEAR_SS = 4 HEAR_4_R = 4.;
If hearing = 4 and HEAR_3_R =. then HEAR_3_X = 4;
Else HEAR_3_X=HEAR_3_R;
If hearing = 4 and HEAR_4_R =. then HEAR_4_X = 4;
Else HEAR_4_X=HEAR_4_R;
*Step 5. Generate a cross-tabulation of the two Hearing Extended Set
questions: HEAR_3_X and HEAR_4_X.;
*Step 6. Create a HEARING INDICATOR (H_INDICATOR) based on the two additional
hearing questions HEAR_3_X and HEAR_4_X
The syntax below creates a HEARING INDICATOR (H_INDICATOR) based on the two
additional hearing questions HEAR_3_X and HEAR_4_X;
IF (HEAR_3_X = 1 AND HEAR_4_X = 1) OR (HEAR_3_X = 1 AND HEAR_4_X = 2) then
H_INDICATOR = 1;
```

For more information on the Washington Group on Disability Statistics, visit:

Else $\operatorname{IF}\left(H E A R _3 _X=2\right.$ AND (HEAR_4_X $=1$ OR HEAR_4_X = 2)) OR (HEAR_3_X = 1 AND HEAR_4_X $={ }^{-} 3$) then H _INDIC $\bar{A} T \bar{O} R=2$; Else IF ($\bar{H} E \bar{A} R _3 _X=3$ AND $^{-}\left(H E A R _4 _X=1 \quad O R \quad H E A R _4 _X=2\right)$ OR (HEAR_3_X $=2$ AND HEAR $4-\mathrm{X}^{-}={ }^{-} 3$) OR (HEAR_3 $\mathrm{X}^{-}={ }^{-} 1$ AND HEAR_4 X $\overline{=} \overline{4}$)) then H_INDIC $\bar{A} T \bar{O} R=3$;
 AND (HEAR_3_X = 2 OR HEAR_3_X = 3))) then H_INDICATOR = 4;
*Step 7. Generate frequency distribution for each domain question: Cognition COG_SS is the WG-SS Cognition question.
Cognition: Degree of difficulty remembering or concentrating;
*Recode 7,8,9 to .;
If COG_SS in $(1,2,3,4)$ then Cognition=COG_SS;
Else If COG_SS in $(7,8,9)$ then Cognition=.;
*If response to COG-SS 2, 3 or 4 then the respondent is asked COG_1: whether they have difficulty remembering, concentrating or both. ;

If COG_1 in (1,2,3) then COG_1 R=COG 1;
Else If COG_1 in $(7,8,9)$ then $\overline{\mathrm{C}} \mathrm{COG}_{1} 1 _\overline{\mathrm{R}}=$.;
*Step 8. Account for those who did not answer COG_1 (COG_SS is 1 - no difficulty and they were skipped) by recoding COG_1 to 0^{-}(No difficulty). If response to COG-SS is 1: no difficulty, then the variable COG_1 is recoded into COG_1A, and the value assigned is 0: no difficulty;

If COG_SS=1 then COG_1A=0;
Else COG_1A=COG_1_R;
*Step 9. Generate frequency distribution for remaining cognition questions. Frequency distribution of the Cognition extended REMEMBERING questions: COG_2 and COG_3.;

If COG_2 in $(1,2,3)$ then COG_2_R=COG_2;

If COG_3 in $(1,2,3)$ then COG_3_R=COG_3;
Else If COG_3 in $(7,8,9)$ then COG_3_R=.;
*Step 10. Generate cross-tabulation of the two Cognition extended set questions COG_2 by COG_3.;
*Step 11. Create a Remembering Indicator based on distribution of COG_2 and COG_3. The syntax below creates a REMEMBERING INDICATOR (R_INDICATOR) based on the additional remembering questions (COG_2_R and COG_3_R).
If COG_SS is 1: no difficulty, then the Remembēring Indic̄ā̄or is coded as 1: the lowest level of difficulty;

IF (Cognition $=1$) then R_INDICATOR = 1;

(COG_3_R = $2 \overline{\mathrm{~A}} \mathrm{~N} \overline{\mathrm{D}} \mathrm{COG} 2 _\mathrm{R}=\overline{1}^{\prime}$)) then R_INDIC $\bar{A} T \bar{O} R=2$;
Else $\mathrm{I} \overline{\mathrm{F}}$ (COG_3_R $=2^{-}$AND COG_2_R = 2) then R_INDICATOR = 3 ;
Else IF (COG_3_R $=3$ OR COG_ $\overline{2}-\bar{R}=3$) then R_INDICATOR $=4$;
*Step 12. If COG_1A is coded as 2 (concentrating only), then the Remembering Indicator is coded as 5.
These 388 individuals are respondents who were not included in the
Remembering Indicator since they had only difficulty concentrating. ;

For more information on the Washington Group on Disability Statistics, visit:

Else IF (COG_1A = 2) then R_INDICATOR = 5;
Else R_INDICĀTOR $=0$;
*Step 13. Generate frequency distribution of the Remembering Indicator.;
*Step 14. Supplement Remembering Indicator with information on difficulty concentrating.
The syntax below adds information on whether cognitive difficulties are compounded by difficulty concentrating in addition to difficulty remembering. Create a COGNITION INDICATOR (COG_INDICATOR) based on R_INDICATOR (above) and the cognition question (COG_1). The 388 individuals with 'concentrating only' were allocated as follows:

1. 357 with a little difficulty on COG_SS question were classified as 2
2. 30 with a lot of difficulty on COG_(SS question were classified as 3
3. 1 with cannot do on COG_SS question was classified as 4 Those with both remembering and concentrating difficulty were upgraded 36 individuals from 2 to 3, and 125 individuals from 3 to 4.;

COG INDICATOR=R_INDICATOR;
IF ${ }^{-}$R_INDICATOR ${ }^{-}=5$ AND Cognition $=2$) then COG_INDICATOR $=2$;
Else $\bar{I} F(R \quad I N D I C A T O R=5$ AND Cognition $=3$) then COG_INDICATOR = 3;
Else IF (R_INDICATOR = 5 AND Cognition $=4$) then COG_INDICATOR $=4$;
IF (R_INDICATOR $=2$ AND COG_1_R $=3$ AND Cognition $=\overline{3}$) then COG_INDICATOR = 3;
Else IF (R_INDICATOR = 3 AND COG_1_R = 3 AND Cognition = 3) then COG_INDICAT̄OR = 4;
*Step 15. Generate frequency distribution of the Cognition Indicator.;
*Step 16. Generate frequency distribution for each domain question: Self-care and Upper body functioning.;
*UB_SS is the WG-SS Self-care question.
Recode 7,8,9 to .;
If UB_SS in $(1,2,3,4)$ then Self_care $=U B$ _SS;
Else Self_care =.;
If UB_1 in $(1,2,3,4)$ then UB_1_R=UB_1;

If $U B _2$ in $(1,2,3,4)$ then $U B _2 _R=U B _2$;
Else If UB_2 in $(7,8,9)$ then $U B _2 _R=$;
*Step 17. Generate a cross-tabulation of the two Upper body Extended Set questions: UB_2_R and UB_1_R.;
*Step 18. Create an UPPER BODY INDICATOR (UB_INDICATOR) based on the two additional self care questions UB_2_R and UB_3_R.
Syntax below creates UB_INDICATOR based on the distribution in the crosstabulation above.;

IF (UB_1_R = 4 OR UB_2_R = 4) then UB_INDICATOR = 4;
Else IF UB_INDICATOR NE 4 AND (UB_1_R = 3 OR UB_2_R = 3) then UB_INDICATOR = 3;
Else IF UB_INDICATOR NE 4 AND UB_INDICATOR NE 3 AND (UB_1_R = 2 OR UB_2_R =
2) then UB_INDICATOR $=2$;

Else IF UB_INDICATOR NE 4 AND UB_INDICATOR NE 3 AND UB_INDICATOR NE 2 AND (UB_1_R = $\overline{1}$ OR UB_2_R = 1) thēn UB_INDICATOR = 1.;

```
*Step 19. Generate frequency distribution for each domain question: Mobility.
MOB_SS is the WG-SS Mobility question
First, calculate frequency distributions on the short set and two extended
set WALKING questions (MOB_4,MOB_5);
If MOB_SS2 in (1,2,3,4) then Mobility=MOB_SS2;
Else Mōbility=.;
If MOB_4 in (1,2,3,4) then MOB_4_R=MOB_4;
Else If MOB_4 in (7,8,9) then MOB_4_R=.;
If MOB 5 in (1,2,3,4) then MOB 5 R=MOB 5;
Else I\overline{f} MOB_5 in (7,8,9) then M
*Step 20. Generate a cross-tabulation of the walking distance questions:
MOB_4_R (Difficulty walking 100 yards without equipment) and MOB_5_R
(Diffículty walking 1/3 mile without equipment ) to determine a siñgle
WALKING INDICATOR.
NOTE: }623\mathrm{ individuals who responded cannot do at all to MOB_4 were not asked
MOB_5 and they do not appear in the table below.
They are, however, accounted for in the WALKING indicator calculation;
*Step 21. Create a WALKING INDICATOR (WALK_INDICATOR) based on the two
additional walking questions MOB_4_R and MOB_5_R.
Syntax below creates WALKING_INDICATOR based on the distribution in the
cross-tabulation above.;
WALK_INDICATOR=0;
IF (MOB_4_R = 1 AND (MOB_5 R = 1 OR MOB_5_R = 2)) then WALK_INDICATOR = 1;
Else IF }\mp@subsup{}{}{-}(\overline{M}OB_4_R=1 AND ' MOB_5_R = 3) OR ('MOB_4_R = 2 AND (MOBB_5_R = 1 OR
MOB_5_R = 2 OR MOB_5_R = 3)) then WALK_INDICATOR = 2;
Else IF (MOB_4_R = 1 AND MOB_5_R = 4) OR (MOB_4_R = 3 AND (MOB_5_R = 1 OR
MOB_5_R = 2 O
Else\overline{e}\overline{IF}(MOB_4_R = - 2 - AND MOB_5_R = 4) }\mp@subsup{}{}{-}\textrm{OR}(MOB_4_R = 3 AND MOB_5_R = 4) then
WALK_INDICATOR = 4;
*Syntax below includes the 623 who responded cannot do at all to MOB_4 into
the WALKING INDICATOR;
Else IF (WALK_INDICATOR = 0 AND MOB_4_R = 4) then WALK_INDICATOR = 4;
*RECODE WALK_INDICATOR (0 = SYSMIS).;
IF WALK_INDICATOR=0 then WALK_INDICATOR=.;
*Step 22. Supplement Walking Indicator with information on difficulty
Climbing steps (MOB_6). CROSSTABS WALK_INDICATOR BY MOB_6.;
If MOB_6 in (1,2,3,4) then MOB_6_R=MOB_6;
```



```
*Step 23. Create a mobility indication (MOB_INDICATOR) with information
garnered from cross-tabulation above.;
MOB_INDICATOR = WALK_INDICATOR;
IF (WALK INDICATOR = 2 AND MOB 6 R = 3) then MOB INDICATOR = 3;
Else IF (WALK_INDICATOR = 1 AND MOB_6_R = 3) then MOB_INDICATOR = 2;
```

```
Else IF (WALK_INDICATOR = 2 AND MOB_6_R = 4) then MOB_INDICATOR = 4;
Else IF (WALK_INDICATOR = 1 AND MOB_6_ - = 4) then MOB_
*Step 24. Generate frequency distribution on ANX_1 (Anxiety);
If ANX_1 in (1,2,3,4,5) then ANX_1_R=ANX_1;
Else I\overline{f}}\mathrm{ ANX_1 in (7,8,9) then ANXX_\
*Step 25. The syntax below recodes ANX_3R into ANX_3Y to place "SOMEWHERE
BETWEEN" numerically in-between "A LITTLE" and "A LOT";
If ANX_3R =1 then ANX_3Y=1;
Else If ANX 3R =2 the\overline{n}\mathrm{ ANX 3Y=3;}
Else If ANX_3R =3 then ANX_3Y=2;
Else If ANX_3R in (7,8,9) then ANX_3Y=.;
*Recode ANX_3Y to 0 (not asked) if ANX_1 is 5 (Never).;
If ANX_1 =5 then ANX_3Y=0;
*Step 26. Generate a cross-tabulation of the anxiety Extended Set questions:
ANX_1_R and ANX_3Y.;
*Step 27. Create an ANXIETY INDICATOR (ANX_INDICATOR) based on the two
anxiety questions ANX_1_R and ANX_3Y.
Syntax below creates ANX__INDICATOR based on the distribution in the cross-
tabulation above.;
IF (missing(ANX_1_R) OR missing(ANX_3Y)) then ANX_INDICATOR=.;
Else IF ( ANX_3\overline{Y}}\overline{l}e 4 AND (ANX_1_R = 4 OR ANX_1_R = 5)) then ANX_INDICATOR=1; 
Else IF ((ANX_1_R = 3) OR (ANX_1_R LT 3 AND ANX_3Y=1) OR (ANX_1_ R = 2 AND
ANX_3Y = 2)) then ANX_INDICATOR = 2;
Else IF ((ANX_1_R = 1 AND ANX_3Y = 2) OR (ANX_1_R = 2 AND ANX_3Y = 3)) then
ANX_INDICATOR = 3;
Else IF ( ANX_1_R = 1 AND ANX_3Y = 3) then ANX_INDICATOR = 4;
*Step 28. Generate frequency distribution on DEP_1 (Depression);
If DEP_1 in (1,2,3,4,5) then DEP_1_R=DEP_1;
Else I\overline{f}}\textrm{DEP_1}\mathrm{ in (7,8,9) then DE ( 
Else DEP_1_\overline{R}=.;
*Step 29. The syntax below recodes DEP_3R into DEP_3Y to place "SOMEWHERE
BETWEEN" numerically in-between "A LITTLE" and "A LOT";
If DEP_3R =1 then DEP 3Y=1;
Else If DEP_3R =2 then DEP_3Y=3;
Else If DEP_3R =3 then DEP_3Y=2;
Else If DEP_3R in (7,8,9) then DEP_3Y=.;
*Recode DEP_3Y to 0 (not asked) if DEP_1 is 5 (Never).;
If DEP_1 =5 then DEP_3Y=0;
*Step 30. Generate a cross-tabulation of the depression Extended Set
questions: DEP_1_R and DEP_3Y.;
```

```
*Step 31. Create a DEPRESSION INDICATOR (DEP_INDICATOR) based on the two
depression questions DEP_1_R and DEP_3Y;
IF (missing(DEP_1_R) OR missing(DEP_3Y)) then DEP_INDICATOR = .;
Else IF (DEP_3Y Le 4 AND (DEP_1_R = 4 OR DEP_1_R = 5)) then DEP_INDICATOR=1;
Else IF ((DE的_1_R = 3) OR (DEP_ _
DEP 3Y = 2)) then DEP INDICATOR = 2;
Else}\operatorname{IF ((DEP_1_R = 1' AND DEP_3Y = 2) OR (DEP_1_R = 2 AND DEP_3Y = 3)) then
DEP_INDICATOR = 3;
Else IF (DEP_1_R = 1 AND DEP_3Y = 3) then DEP_INDICATOR = 4;
*Step 32. Generate frequency distribution on PAIN_2 (Pain);
If PAIN_2 in (1,2,3,4) then PAIN_2_R=PAIN_2;
Else If PAIN_2 in (7,8,9) then PAIN_2_R=.;
*Step 33. The syntax below recodes PAIN_4 into PAIN_4Y to place "SOMEWHERE
BETWEEN" numerically in-between "A LITT\overline{LE" and "A LO}T"
It also creates the category NOT ASKED, if PAIN_2 is NEVER (1);
If PAIN_4 =1 then PAIN_4Y=1;
Else If PAIN_4 =2 then PAIN_4Y=3;
Else If PAIN_4 =3 then PAIN_4Y=2;
Else If PAIN_4 in (7,8,9) then PAIN_4Y=.;
If PAIN_2=1 then PAIN_4Y=0;
*Step 34. Generate a cross-tabulation of the PAIN Extended Set questions:
PAIN_2_R and PAIN_4Y.;
*Step 35. Create a PAIN INDICATOR (P_INDICATOR) based on the two PAIN
questions PAIN_2_R and PAIN_4Y.
Syntax below creates P_INDICATOR based on the distribution in the cross-
tabulation above.;
IF (PAIN_2_R = 1) OR (PAIN_4Y = 1 AND (PAIN_2_R = 2 OR PAIN_2_R = 3)) then
P_INDICATOR = 1;
Else IF ((PAIN_2_R = 2 AND (PAIN_4Y = 2 OR PAIN_4Y = 3)) OR (PAIN_2_R = 3
AND PAIN_4Y = \overline{2})
Else IF (PAIN_2_R = 3 AND ' \overline{PAIN_4Y = 3) OR }
then P_INDICAT}O\overline{R}=3
Else IF (PAIN_2_R = 4 AND PAIN_4Y = 3) then P_INDICATOR = 4;
*Step 36. Generate frequency distribution on FATIGUE Extended Set questions
Tired_1 (How often you felt tired in the past 3 months.),
Tired_2 and Tired_3;
If TIRED_1 in (1,2,3,4) then TIRED_1_R=TIRED_1;
Else If TIIRED_1 in (7,8,9) then TIRED_1_R=.;
If TIRED_2 in (1,2,3) then TIRED_2_R=TIRED_2;
Else If TIRED_2 in (7,8,9) then TIRED_2_R=.;
Else TIRED_2_\overline{R}=.;
```

```
*Step 37. Recode Tired_2 to 0 (not asked) if Tired_1 is 1 (Never).;
```

If TIRED_1 =1 then TIRED_2_R=0;
*Step 38.recodes TIRED_3 into TIRED_3Y to place "SOMEWHERE BETWEEN"
numerically in-between "A LITTLE" and "A LOT".
Also, if response to TIRED 1 is 1: Never, then TIRED 3 is not asked;
If TIRED_3 =1 then TIRED $3 Y=1$;
Else If TIRED_3 $=2$ then TIRED_3Y=3;
Else If TIRED_3 =3 then TIRED_3Y=2;
Else If TIRED_3 in $(7,8,9)$ then TIRED_3Y=.;
If TIRED_1=1 then TIRED_3Y=0;
*Step 39. Generate a cross-tabulation of the FATIGUE Extended Set questions:
TIRED_1_R, TIRED_2_R and TIRED_3Y.;
*Step 40. Create a FATIGUE INDICATOR (T INDICATOR) based on the three FATIGUE
questions TIRED_1_R, TIRED 2 R and TIRED $3 Y$.;
IF (TIRED_1_R = 1) then T_INDICATOR = 1;
Else IF (TIRED_1_R = 2 AND TIRED_2_R = 1 AND TIRED_3Y = 1) then T_INDICATOR =
1;
Else IF (TIRED_1_R = 3 AND TIRED_2_R = 1 AND TIRED_3Y = 1) then T_INDICATOR =
1;
Else IF (TIRED_1_R in (2,3,4) AND TIRED_2_R in (2,3) AND TIRED_3Y =1) then
T_INDICATOR = 2;
Else IF (TIRED_1_R in (2,3,4) AND TIRED_2_R =1 AND TIRED_3Y = 2) then
T INDICATOR $=\overline{2}$;
Else IF (TIRED_1_R =2 AND TIRED_2_R =2 AND TIRED_3Y =2) then T_INDICATOR = 2;
Else IF (TIRED_1_R =4 AND TIRED_2_R =1 AND TIRED_3Y =1) then T_INDICATOR = 2;
Else IF (TIRED_1_R in $(3,4)$ AND TIRED_2_R $=2$ AND TIRED_3Y $=2$) then
T INDICATOR $=\overline{3}$;
Else IF (TIRED_1_R in (2,3,4) AND TIRED_2_R =3 AND TIRED_3Y = 2) then
T_INDICATOR = 3;
Else IF (TIRED_1_R in $(2,3,4)$ AND TIRED_2_R =1 AND TIRED_3Y =3) then
T_INDICATOR = 3;
Else IF (TIRED_1_R in $(2,3)$ AND TIRED_2_R $=2$ AND TIRED_3Y $=3$) then
T INDICATOR = $\overline{3}$;
EISe IF (TIRED_1_R =2 AND TIRED_2_R =3 AND TIRED_3Y =3) then T_INDICATOR = 3;
Else IF (TIRED_1_R =4 AND TIRED_2_R =2 AND TIRED_3Y =3) then T_INDICATOR = 4;
Else IF (TIRED_1_R in $(3,4)$ AND $T \bar{I} R E D _2 _R=3$ AND TIRED_3Y $=3$) then
T INDICATOR $=\overline{4}$;
EIse T_INDICATOR = .;
*SS_1: WG Short Set Disability Indicator based on the 6 short set questions.;
IF (missing(vision) AND missing(hearing) AND missing(mobility) AND
missing(communication) AND missing(Self_care) AND missing(Cognition)) then
SS_1 = .;
Else IF ((vision = 3 OR vision = 4) OR
(hearing= 3 OR hearing = 4) OR
(mobility= 3 OR mobility = 4) OR
(communication= 3 OR communication = 4) OR

```
        (Self_care = 3 OR Self_care = 4) OR
    (Cogn\overline{i}tion = 3 OR Cogn\overline{ition = 4)) then SS_1 = 1;}
Else SS_1 = 2;
```

*ES_1: SS_1 + Hearing-indicator, Mobility-indicator, Cognition-indicator +
Upper Body-indicator + PFAD (4).
PFAD=only level 4 in Pain indictor, Fatigue indicator, Anxiety indictor, and
Depression indicator;
IF (missing(SS_1) AND (H_INDICATOR LT 1 OR H_INDICATOR GT 4) AND
(MOB_INDICATOR LT 1 OR MOB_INDICATOR GT 4) AND missing (COM_SS) AND
missing (UB_SS) AND (COG_INDİCATOR LT 1 OR COG_INDICATOR GT $\overline{4}$) AND
(UB INDICATOR LT 1 OR UB INDICATOR GT 4) AND \bar{m} issing (P INDICATOR) AND
(T_INDICATOR LT 1 OR T_IN̄DICATOR GT 4) AND (ANX_INDICATOR LT 1 OR
ANX_INDICATOR GT 4) AND (DEP_INDICATOR LT 1 OR DEP_INDICATOR GT 4)) then
ES_1 = .;
Else IF (SS $1=1$ OR (H INDICATOR $=30 \mathrm{OR}$ H INDICATOR = 4) OR (MOB INDICATOR =
3 OR MOB INDICATOR = 4) OR (COG INDICATOR $=3$ OR COG INDICATOR = 4) OR
(UB_INDI $\bar{C} A T O R=3$ OR UB_INDICATOR $=4$) OR P_INDICATOR $=4$ OR T_INDICATOR $=4$
OR ANX_INDICATOR = 4 OR DEP_INDICATOR = 4) then ES_1 = 1;
Else $E \bar{S} _1=2$;
*ES_2: SS_1 + Hearing-indicator, Mobility-indicator, Cognition-indicator +
Upper Body-indicator + AD (4)
AD=only level 4 in Anxiety indictor and Depression indicator;
IF (missing (SS 1) AND (H INDICATOR LT 1 OR H INDICATOR GT 4) AND
(MOB_INDICATOR LT 1 OR MŌB_INDICATOR GT 4) AN̄D missing (COM_SS) AND
missing (UB_SS) AND (COG_IND̄ICATOR LT 1 OR COG_INDICATOR GT ${ }^{-}$4) AND
(UB_INDICATOR LT 1 OR UB_INDICATOR GT 4) AND (ANX_INDICATOR LT 1 OR
ANX_INDICATOR GT 4) AND (DEP_INDICATOR LT 1 OR DEP_INDICATOR GT 4)) then
ES_ $\overline{2}=$.;
Else IF (SS_1 = 1 OR (H_INDICATOR = 3 OR H_INDICATOR = 4) OR (MOB_INDICATOR =
3 OR MOB_INDICATOR = 4) OR (COG_INDICATOR = 3 OR COG_INDICATOR = 4) OR
(UB_INDI $\bar{C} A T O R=3$ OR UB_INDICATOR $=4$) OR ANX_INDICAT$O R=4 O R$
DEP_INDICATOR $=4$) then ${ }^{-}$ES_2 $=1$;
Else ES_2 = 2;
*ES_3: SS_1 + Upper Body-indicator + AD (4)
$A D=o n l y$ level 4 in Anxiety indictor and Depression indicator;
IF (missing(vision) AND missing(hearing) AND missing(mobility) AND
missing(communication) AND missing(Self_care) AND missing(Cognition) AND
missing(ANX_INDICATOR) AND missing(DEP_INDICATOR)) then ES_3 = .;
Else IF ((vision = 3 OR vision = 4) OR (hearing= 3 OR hearing = 4) OR
mobility= 3 OR mobility $=4$) OR (communication= 3 OR communication = 4) OR
(Self_care $=3$ OR Self_care $=4$) OR (Cognition = 3 OR Cognition = 4) OR
ANX_INDICATOR = 4 OR DEP_INDICATOR = 4) then ES_3 = 1;
Else ES_3 = 2;

Label
Vision="Degree of difficulty seeing" communication="Degree of difficulty communicating using usual language"

For more information on the Washington Group on Disability Statistics, visit:

```
hearing="Degree of difficulty hearing"
HEAR 3_R="Difficulty hearing conversation with one person in quiet
room"
HEAR_3_X="Difficulty hearing conversation with one person in quiet
room:Recoded from HEAR_3_R"
HEAR_4_R="Diff hearing one person in noisier room even w/ hearing aid"
HEAR_4_X="Diff hearing one person in noisier room even w/ hearing
aid:\overline{Recoded from HEAR_4_R"}
H_INDICATOR="Hearing indictor"
Cognition="Degree of difficulty remembering or concentrating"
COG_1_R="Difficulty remembering, concentrating, or both?"
COG_1\overline{A}="Include respondents who did not asked COG_1"
COG_2_R="How often have difficulty remembering?"
COG_3_R="Amount of things you have difficulty remembering?"
R_INDICATOR="Remembering indicator"
COG_INDICATOR="COG INDICATOR"
Sel\overline{f_care="Degree of difficulty with self-care"}
UB_1_R="Diff raising 2 liter bottle of water from waist to eye level"
UB_2-
UB_INDICATOR="UB INDICATOR"
MOB_4_R="Diff walking 100 yards on level ground w/o aid or equipment"
MOB_5_R="Diff walking l/3rd mile on level ground w/o aid or equipment"
WAL\overline{K}
MOB INDICATOR="MOB INDICATOR"
PAI\overline{N}_2_R="Frequency of pain in past 3 months"
PAIN_4Y="How much pain you had last time you had pain?"
P_INDICATOR="Pain INDICATOR"
TIRED_1_R="How often felt very tired or exhausted in past 3 months"
TIRED_2_R="How long most recent tired or exhausted feelings lasted?"
TIRED_3\overline{Y}="Level of tiredness last time felt very tired or exhausted"
T_INDICATOR="Tired INDICATOR"
S\overline{S_1="WG Short Set Disability Identifier"}
ES_1="WG-ES Disability Indicator based on 11 domains and 25 questions"
ES_2="WG-ES Disability Indicator based on 9 domains and 20 questions"
ES_3="WG-SS Enhanced Disability Indicator based on 9 domains and 12
questions"
;
Format Vision communication hearing HEAR_3_R HEAR_4_R HEAR_3_X HEAR_4_X
Cognition Self care UB_1_R UB_2_R Mobilíity MOB_4-R MOB \overline{5}}\overline{R
COG_1_R COGF. \overline{COG_1A COGG1AF. COG_2_R Cog2f. COG_3_R-Cog3f. P}\mathrm{ PAIN_2_R TIRED_1_R}
pain2Tire1f. TIRED_2_R Tire2f. PAIN_4Y TIRED_3Y pain4Tire3́f.
ANX_1_R DEP_1_R AnxDep. ANX_3Y DEP_3Y AnxDep3F. SS_1 ES_1 ES_2 ES_3 DisabF.;
Run;
```

```
Proc format library=ES.ES;
```

Proc format library=ES.ES;
Value Diff
Value Diff
1="No Difficulty"
1="No Difficulty"
2="Some Difficulty"
2="Some Difficulty"
3="A lot of Difficulty"
3="A lot of Difficulty"
4="Cannot do at all"
4="Cannot do at all"
.="Missing"
.="Missing"
;
;
Value COGF
Value COGF
1="Difficulty remembering only"
1="Difficulty remembering only"
2="Difficulty concentrating only"
2="Difficulty concentrating only"
3="Difficulty with both remembering and concentrating"

```
    3="Difficulty with both remembering and concentrating"
```

For more information on the Washington Group on Disability Statistics, visit:

```
;
Value COG1AF
    0="(0)No difficulty"
    1="Difficulty remembering only"
    2="Difficulty concentrating only"
    3="Difficulty with both remembering and concentrating"
;
Value Cog2f
    1="Sometimes"
    2="Often"
    3="All of the time"
;
Value Cog3f
    1="A few things"
    2="A lot of things"
    3="Almost everything"
;
Value AnxDep
    1="Daily"
    2="Weekly"
    3="Monthly"
    4="Afew times a year"
    5="Never"
;
Value AnxDep3F
    0="Not asked"
    1="A little"
    2="In bewteen"
    3="A lot"
;
Value pain2Tire1f
    1="Never"
    2="Some days"
    3="Most days"
    4="Every day"
;
Value Tire2f
    0="NOT ASKED"
    1="Some days"
    2="Most days"
    3="Every day"
;
Value pain4Tire3f
    0="NOT ASKED"
    1="A little"
    2="in between"
    3="A lot"
;
Value DisabF
    1="With Disability"
    2="Without Disability"
;
```

Run;

For more information on the Washington Group on Disability Statistics, visit:

